首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105558篇
  免费   6661篇
  国内免费   20篇
  2021年   1467篇
  2020年   1272篇
  2019年   1419篇
  2018年   2657篇
  2017年   2385篇
  2016年   3238篇
  2015年   4267篇
  2014年   4550篇
  2013年   5929篇
  2012年   6887篇
  2011年   6206篇
  2010年   4154篇
  2009年   3450篇
  2008年   5054篇
  2007年   4832篇
  2006年   4671篇
  2005年   3953篇
  2004年   4012篇
  2003年   3534篇
  2002年   3319篇
  2001年   2740篇
  2000年   2537篇
  1999年   2068篇
  1998年   990篇
  1997年   736篇
  1996年   763篇
  1995年   723篇
  1994年   663篇
  1993年   587篇
  1992年   1260篇
  1991年   1180篇
  1990年   1133篇
  1989年   1178篇
  1988年   986篇
  1987年   1000篇
  1986年   916篇
  1985年   963篇
  1984年   791篇
  1983年   714篇
  1982年   597篇
  1979年   815篇
  1978年   606篇
  1977年   593篇
  1975年   702篇
  1974年   760篇
  1973年   716篇
  1972年   659篇
  1970年   627篇
  1969年   690篇
  1968年   649篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
71.
All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell''s height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.  相似文献   
72.
This study characterized the behavioral activity of Macrobrachium rosenbergii in the early stages of development, under different stocking densities (25 and 40 animals/m2), and during the light and dark phases of a 24-h cycle. Observations of individuals were made in 8 aquariums. Behavioral recording lasted 15 min/aquarium, 4 times/day and 4 days/week, 4 weeks in total. Food was offered twice daily. Observational methods included a combination of behavioral sampling and scan sampling. During the light phase, inactivity, cleaning and remaining in a shelter were the most frequent behaviors. During the dark phase the subjects displayed a higher frequency of feeding, exploration, swimming, and digging. At low density, the animals gained more weight and exhibited greater growth overall. These results indicate a behavioral pattern that is more favorable to animals in the lower density cultivation environment that can also create better living conditions for these shrimp, favor survival rates and therefore improve management success.  相似文献   
73.
Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury.  相似文献   
74.
75.
The involvement of gibberellins in the control of flowering of sunflower was studied by direct application of GA3 to the apex of the plants, analysis of the endogenous levels of gibberellin-like substances at different plant ages, and indirectly by the application of paclobutrazol, an inhibitor of gibberellin synthesis. GA3 speeded-up flower initiation and floral apex development. The time of GA3 application was more critical than the amount of GA3 applied. The endogenous levels of gibberellin-like compounds increased significantly by day 15 after sowing. The application of paclobutrazol markedly delayed floral initiation and this effect was also depedent on plant age. Both GA3 and paclobutrazol had their greatest effects between 10 and 20 days after sowing suggesting that an increase in gibberellins in that time period plays a role in floral initiation.  相似文献   
76.
77.
78.
A major issue in modern agriculture is water loss through stomata during photosynthetic carbon assimilation. In water-limited ecosystems, annual plants have strategies to synchronize their growth and reproduction to the availability of water. Some species or ecotypes of flowers are early to ensure that their life cycles are completed before the onset of late season terminal drought (“drought escape”). This accelerated flowering correlates with low water-use efficiency (WUE). The molecular players and physiological mechanisms involved in this coordination are not fully understood. We analyzed WUE using gravimetry, gas exchange, and carbon isotope discrimination in florigen deficient (sft mutant), wild-type (Micro-Tom), and florigen over-expressing (SFT-ox) tomato lines. Increased florigen expression led to accelerated flowering time and reduced WUE. The low WUE of SFT-ox was driven by higher stomatal conductance and thinner leaf blades. This florigen-driven effect on WUE appears be independent of abscisic acid (ABA). Our results open a new avenue to increase WUE in crops in an ABA-independent manner. Manipulation of florigen levels could allow us to produce crops with a life cycle synchronized to water availability.  相似文献   
79.
Notothenioidei, the taxonomic group of teleosts that dominates the Southern Ocean and dwell in the Ross Sea at large, provide an example of marine species that underwent unique adaptations to life at low temperatures and high oxygen concentrations, resulting in morphological, physiological, genomic, and biochemical peculiarities in comparison with warm-water fish. Global Warming raises concerns over the fate of these stenothermal fish, as their adaptation has been accompanied by irreversible genomic losses, which suggest a poor genetic potential to adapt to warmer climates. Specifically, this review focuses on adaptation of proteins belonging to the globin superfamily, which include the respiratory proteins hemoglobin and myoglobin and the non-respiratory proteins neuroglobin and cytoglobin. Here, we describe their molecular adaptations to cold temperatures in the framework of the physiology of oxygen transport and management of oxidative stress in fish species largely populating the Ross Sea.  相似文献   
80.
Variations in abiotic characteristics such as soil water availability and fertility impose different selective pressures on plant populations. This may produce intraspecific variability in functional traits, even at a fine spatial scale. We investigated whether functional traits related to water-use efficiency, resource-retention strategy, soil nutrient acquisition, and fire tolerance differ in species that occur in two different habitats of Brazilian Cerrado: rocky savannas and savanna woodlands. Rocky savannas occur over sandstone, quartzite outcrops and have shallow nutrient-poor and low-moisture rocky soils, while savanna woodlands occur over well-drained and deep soils with frequent fire regimes. We measured nine functional traits of 40 tree species that occur in both habitats. Rocky savanna individuals exhibited a greater water-use efficiency strategy. The resource-retention strategy in rocky savanna individuals was corroborated by lower adult maximum height. However, despite the lower nutrient availability in rocky savanna soils, we only detected lower leaf phosphorus content in individuals from this habitat. Furthermore, individuals from both habitats had equally thick bark, suggesting that the fire-defense strategy is related to a stable, rather than plastic trait. Overall, our results highlight the central role of contrasting soil water availability patterns in driving phenotypic plasticity within species. We conclude that savanna species are responding to water and nutrient availabilities, via plasticity in traits related to the resource-retention strategy, and preparing for future fires, via uniformly thick bark. Wide plant distribution in contrasting habitats is possible for species that can shift ecological strategies to survive in nutrient- and water-limited habitats such as rocky savannas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号